<table>
<thead>
<tr>
<th>SL. NO</th>
<th>CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>AM8101</td>
<td>Automotive Chassis</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>AM8102</td>
<td>Automotive Engines and Subsystems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>AM8103</td>
<td>Automotive Transmission</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>MA8155</td>
<td>Advanced Numerical Methods</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Elective I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Elective II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

| PRACTICAL | | Engine and Chassis Laboratory | 0 | 0 | 3 | 2 |

| TOTAL | 18 | 2 | 3 | 22 |

<table>
<thead>
<tr>
<th>SL. NO</th>
<th>CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>AM8201</td>
<td>Automotive Electrical and Electronics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>AM8202</td>
<td>Automotive Pollution and Control</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>AM8203</td>
<td>Vehicle Body Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>AM8254</td>
<td>Vehicle Dynamics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Elective III</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Elective IV</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

| PRACTICAL | | Automotive Electrical and Electronics Laboratory | 0 | 0 | 3 | 2 |

| TOTAL | 18 | 0 | 3 | 20 |

<table>
<thead>
<tr>
<th>SL. NO</th>
<th>CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>AM8301</td>
<td>Engine Management Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Elective V</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Elective VI</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

| PRACTICAL | | Computer aided Vehicle Design Laboratory | 0 | 0 | 3 | 2 |
| 5 | AM8312 | Project Work Phase I | 0 | 0 | 12 | 6 |

| TOTAL | 9 | 0 | 15 | 17 |
SEMESTER IV

<table>
<thead>
<tr>
<th>SL. NO</th>
<th>CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>AM8411</td>
<td>Project Work Phase II</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>12</td>
</tr>
</tbody>
</table>

TOTAL CREDITS TO BE EARNED FOR THE AWARD OF DEGREE = 71

ELECTIVES FOR M.E. AUTOMOBILE

<table>
<thead>
<tr>
<th>SL. NO</th>
<th>CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AM8001</td>
<td>Advanced Thermodynamics for Automobile Engineers</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>AM8002</td>
<td>Alternative Fuels and Propulsion Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>AM8003</td>
<td>Automotive Aerodynamics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>AM8004</td>
<td>Automotive Air Conditioning Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>AM8005</td>
<td>Automotive Safety</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>AM8006</td>
<td>Combustion Thermodynamics and Heat Transfer</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>AM8007</td>
<td>Electric and Hybrid Vehicles</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>AM8008</td>
<td>Finite Element Methods in Automobile Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>AM8009</td>
<td>Hydraulic and Pneumatic Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>AM8010</td>
<td>IC Engine process Modeling</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>AM8011</td>
<td>Instrumentation and Experimental Techniques</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>AM8012</td>
<td>Novel Materials in Automobile Technology</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>AM8013</td>
<td>Production of Automobile Components</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>AM8014</td>
<td>Simulation of Vehicle systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>AM8015</td>
<td>Special Types of Vehicles</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>AM8016</td>
<td>Theory of Fuels and Lubricants</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>AM8017</td>
<td>Two and Three Wheelers</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>18</td>
<td>AM8018</td>
<td>Vehicle Control Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td>AM8019</td>
<td>Vehicle maintenance</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
UNIVERSITY DEPARTMENTS
ANNA UNIVERSITY :: CHENNAI 600 025
REGULATIONS - 2013
CURRICULUM I TO VI SEMESTERS (PART TIME)
M.E. AUTOMOBILE ENGINEERING

SEMESTER I

<table>
<thead>
<tr>
<th>SL. NO</th>
<th>CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MA8155</td>
<td>Advanced Numerical Methods</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>AM8101</td>
<td>Automotive Chassis</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>AM8102</td>
<td>Automotive Engines and Subsystems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>AM8111</td>
<td>Engine and Chassis Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>9</td>
<td>2</td>
<td>3</td>
<td>13</td>
</tr>
</tbody>
</table>

SEMESTER II

<table>
<thead>
<tr>
<th>SL. NO</th>
<th>CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>AM8254</td>
<td>Vehicle Dynamics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>AM8201</td>
<td>Automotive Electrical and Electronics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>AM8202</td>
<td>Automotive Pollution and Control</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>AM8211</td>
<td>Automotive Electrical and Electronics Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>9</td>
<td>0</td>
<td>3</td>
<td>11</td>
</tr>
</tbody>
</table>

SEMESTER III

<table>
<thead>
<tr>
<th>SL. NO</th>
<th>CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>AM8103</td>
<td>Automotive Transmission</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Elective I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Elective II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>AM8311</td>
<td>Computer Aided Vehicle Design Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>9</td>
<td>0</td>
<td>3</td>
<td>11</td>
</tr>
</tbody>
</table>

SEMESTER IV

<table>
<thead>
<tr>
<th>SL. NO</th>
<th>CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>AM8203</td>
<td>Vehicle Body Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Elective III</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Elective IV</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>9</td>
<td>0</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>
SEMESTER V

<table>
<thead>
<tr>
<th>SL. NO</th>
<th>CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AM8301</td>
<td>Engine Management Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Elective V</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Elective VI</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

PRACTICAL

<table>
<thead>
<tr>
<th>SL. NO</th>
<th>CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>AM8312</td>
<td>Project Work Phase I</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>9</td>
<td>0</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>

SEMESTER VI

<table>
<thead>
<tr>
<th>SL. NO</th>
<th>CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AM8411</td>
<td>Project Work Phase II</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>12</td>
</tr>
</tbody>
</table>

TOTAL CREDITS TO BE EARNED FOR THE AWARD OF DEGREE = 71

ELECTIVES FOR M.E. AUTOMOBILE

<table>
<thead>
<tr>
<th>SL. NO</th>
<th>CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AM8001</td>
<td>Advanced Thermodynamics for Automobile Engineers</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>AM8002</td>
<td>Alternative Fuels and Propulsion Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>AM8003</td>
<td>Automotive Aerodynamics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>AM8004</td>
<td>Automotive Air Conditioning Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>AM8005</td>
<td>Automotive Safety</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>AM8006</td>
<td>Combustion Thermodynamics and Heat Transfer</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>AM8007</td>
<td>Electric and Hybrid Vehicles</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>AM8008</td>
<td>Finite Element Methods in Automobile Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>AM8009</td>
<td>Hydraulic and Pneumatic Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>AM8010</td>
<td>IC Engine process Modeling</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>AM8011</td>
<td>Instrumentation and Experimental Techniques</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>AM8012</td>
<td>Novel Materials in Automobile Technology</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>AM8013</td>
<td>Production of Automobile Components</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>AM8014</td>
<td>Simulation of Vehicle systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>AM8015</td>
<td>Special Types of Vehicles</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>AM8016</td>
<td>Theory of Fuels and Lubricants</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>AM8017</td>
<td>Two and Three Wheelers</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>18</td>
<td>AM8018</td>
<td>Vehicle Control Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td>AM8019</td>
<td>Vehicle maintenance</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
MA8155 ADVANCED NUMERICAL METHODS

OBJECTIVE:
- To impart knowledge on numerical methods that will come in handy to solve numerically the problems that arise in engineering and technology. This will also serve as a precursor for future research.

OUTCOME:
- It helps the students to get familiarized with the numerical methods which are necessary to solve numerically the problems that arise in engineering.

UNIT I ALGEBRAIC EQUATIONS (9+3)

UNIT II ORDINARY DIFFERENTIAL EQUATIONS (9+3)
Runge Kutta Methods for system of IVPs, numerical stability, Adams-Bashforth multistep method, solution of stiff ODEs, shooting method, BVP: Finite difference method, orthogonal collocation method, orthogonal collocation with finite element method, Galerkin finite element method.

UNIT III FINITE DIFFERENCE METHOD FOR TIME DEPENDENT PARTIAL DIFFERENTIAL EQUATION (9+3)

UNIT IV FINITE DIFFERENCE METHODS FOR ELLIPTIC EQUATIONS (9+3)
Laplace and Poisson’s equations in a rectangular region: Five point finite difference schemes, Leibmann’s iterative methods, Dirichlet and Neumann conditions – Laplace equation in polar coordinates: finite difference schemes – approximation of derivatives near a curved boundary while using a square mesh.

UNIT V FINITE ELEMENT METHOD (9+3)

L:45 +T: 15 TOTAL: 60 PERIODS

BOOK FOR STUDY:
OBJECTIVE:
- Study of the Constructional details and Theory of important drive line, Structural, Steering, Braking and Suspension Systems of Automobiles. Problem–Solving in Steering Mechanism, Propeller Shaft, Braking and Suspension Systems are to be done.

UNIT I LAYOUT, FRAME, FRONT AXLE AND STEERING SYSTEM 13

UNIT II DRIVE LINE, FINAL DRIVE AND DIFFERENTIAL 12

UNIT III REAR AXLES, WHEELS, RIMS AND TYRES 11

UNIT IV SUSPENSION SYSTEM 12
Requirements of Suspension System, Types of Suspension – Constructional details and characteristics of Single Leaf, Multi–Leaf spring, Coil spring and Torsion bar, Rubber, Pneumatic and Hydro – elastic Suspension, Independent Suspension System, Shock Absorbers.

UNIT V BRAKE SYSTEM 12

TOTAL : 60 PERIODS

TEXT BOOKS

REFERENCES
OBJECTIVES:
The main objective of this course is to impart knowledge in automotive transmission. The detailed concept, construction and principle of operation of various types of mechanical transmission components, hydrodynamic devices, hydrostatic devisees and automatic transmission system will be taught to the students. The design of clutch and gearbox will also be introduce to the students. At the end of the course the students will have command over automotive transmission concepts and application.

UNIT I CLUTCH
9
Requirements of Transmission system. Clutches – Functions, Principle of operation and types – single plate, multi plate, diaphragm and overrunning clutches.

UNIT II GEAR BOX
9
Purpose of gear box. Construction and working principle of sliding, constant and synchromesh gear boxes. Problems on performance of automobile such as Resistance to motion, Tractive effort, Engine speed & power and acceleration. Determination of gear box ratios for different vehicle applications.

UNIT III HYDRODYNAMIC TRANSMISSION
9

UNIT IV AUTOMATIC TRANSMISSION
9

UNIT V HYDROSTATIC DRIVE AND ELECTRIC DRIVE
9

L : 45 TOTAL NUMBER OF PERIODS: 45

TEXTBOOK:

REFERENCES:
AIM:
To impart the knowledge on basic concepts on Automotive Engines and its various sub components along with its functions.

OBJECTIVE:
The main objective of this course is to impart knowledge in automotive engine. The detailed concept, construction and principle of operation of engine and various engine components, combustion, cooling and lubrication systems will be taught to the students. At the end of the course the students will have command over automotive engines and the recent development in the area of engines.

UNIT I ENGINE BASIC THEORY
9
Engine types – otto, diesel, dual operating cycles - Engine design and operating parameters - Two and four stroke engines - Typical performance curves for automobile engines- two stroke engine - performance and pollution aspects.

UNIT II FUEL SUPPLY AND IGNITION SYSTEMS
9

UNIT III COOLING AND LUBRICATING SYSTEMS
9
Air cooling and water cooling – thermo syphon cooling, forced cooling systems. Fins and radiator - design aspects. Theory of lubrication — types of lubrication, splash lubrication system, petrol lubrication system, forced feed lubrication system.

UNIT IV AIR MOTION, COMBUSTION AND COMBUSTION CHAMBERS
9

UNIT V NEW ENGINE TECHNOLOGY
9

TOTAL: 45 PERIODS

TEXTBOOK

REFERENCES:
OBJECTIVE:
The main objective of this course is to impart knowledge in the assembling and dismantling and study of different types of an engine and its various systems like steering system, transmission system, electrical system, ignition system, injection system, Braking system. At the end of the course the student will be well versed in the assembling and dismantling of any vehicles.

LIST OF EXPERIMENTS

1. Performance and emission Test of SI Engine.
2. Performance and emission Test of CI Engine.
3. Heat balance test on IC engines
5. Determination of in-cylinder pressure vs crank angle.
7. Study of Wheel Alignment System
8. Assembling and dismantling of the following
 i. SI engine.
 ii. CI engine
 iii. V engine
 iv. Single plate, Diaphragm Clutch.
 v. Constant mesh, Sliding mesh gear box
 vi. Transfer case
 vii. Differential
 viii. Front axle, Rear axle
 ix. Brake system
 x. Steering system

TOTAL: 45 PERIODS

UNIT I BASIS OF VIBRATION

UNIT II TYRES

UNIT III VERTICAL DYNAMICS
UNIT IV LONGITUDINAL DYNAMICS AND CONTROL

UNIT V LATERAL DYNAMICS

TEXT BOOKS:

REFERENCES:
1. Dean Karnopp, Vehicle Stability, 1st edition, Marcel Dekker, 2004

AM8201 AUTOMOTIVE ELECTRICALS AND ELECTRONICS
L T P C
3 0 0 3

AIM:
The student will have to know about all theoretical information and about electrical components used in a vehicle.

OBJECTIVE
To impart knowledge to the students in the principles of operation and constructional details of various Automotive Electrical and Electronic Systems like Batteries, Starting System, charging System, Ignition System, Lighting System and Dash – Board Instruments, Electronic ignition system, various sensors and the role of ECU.

UNIT I BATTERY AND STARTING SYSTEMS

UNIT II CHARGING AND LIGHTING SYSTEMS
UNIT III ELECTRONIC IGNITION AND INJECTION SYSTEMS

UNIT IV ELECTRICAL SYSTEMS
Warning and alarm instruments : Brake actuation warning system, traficators, flash system, oil pressure warning system, engine over heat warning system, air pressure warning system, speed warning system, door lock indicators, neutral gear indicator, horn design, permanent magnet horn, air & music horns. Wind shield wiper. window washer, instrument wiring system and electromagnetic interference suppression, wiring circuits for instruments, electronic instruments, dash board illumination.

UNIT V MICROPROCESSOR IN AUTOMOBILES
Microprocessor And Microcomputer controlled devices in automobiles such as instrument cluster, Voice warning system, Travel information system, Keyless entry system, Automatic Transmission. Environmental requirements (vibration, Temperature and EMI).

TOTAL : 45 PERIODS

TEXTBOOK:

REFERENCES:

AM8203 VEHICLE BODY ENGINEERING
L T P C
3 0 0 3

OBJECTIVES:
The main objective of this course is to impart knowledge in the construction of vehicle, aerodynamic, concept, paneling of passenger car body trim. At the end of the course the student will be well versed in the design and construction of external body of the vehicles.

UNIT I CAR BODY

UNIT II BUS BODY
Types of bus body: based on capacity, distance traveled and based on construction.– Layout for various types of Bus body, Types of metal sections used – Regulations – Constructional details: Conventional and integral. Driver seat design - Safety aspect of bus body.
UNIT III COMMERCIAL VEHICLE BODY
Types of commercial vehicle bodies – LCV, MCV, HCV. Construction details of - Flat platform body, Trailer, Tipper and Tanker body – Dimensions of driver’s seat in relation to controls – Drivers cab design.

UNIT IV VEHICLE AERODYNAMICS
Vehicle drag and types. Types of forces and moments. Effects of forces and moments. Side wind effects on forces and moments. Various body optimization techniques for minimum drag. Wind tunnels – Principle of operation, Types. Wind tunnel testing such as: Flow visualization techniques, Airflow management test – measurement of various forces and moments by using wind tunnel. Drag reducing devices.

UNIT V BODY MATERIALS, TRIM, MECHANISMS AND BODY REPAIR

TEXTBOOK:

REFERENCES:

AM8202 AUTOMOTIVE POLLUTION AND CONTROL

OBJECTIVE:
The main objective of this course is to impart knowledge in automotive pollution control. The detailed concept of formation and control techniques of pollutants like UBHC, CO, NOx, particulate matter and smoke for both SI and CI engine will be taught to the students. The instruments for measurement of pollutants and emission standards will also be introduced to the students. At the end of the course the students will have command over automotive pollution and control.

UNIT I EMISSION FROM AUTOMOBILES

UNIT II EMISSION FROM SPARK IGNITION ENGINE AND ITS CONTROL
Emission formation in SI Engines- Carbon monoxide & Carbon di oxide - Unburned hydrocarbon, NOx, Smoke —Effects of design and operating variables on emission formation – controlling of pollutants - Catalytic converters, Charcoal Canister, CCS, Positive Crank case ventilation system, Secondary air injection, thermal reactor, Laser Assisted Combustion.
UNIT III EMISSION FROM COMPRESSION IGNITION ENGINE AND ITS CONTROL
Formation of White, Blue, and Black Smokes, NOx, soot, sulphur particulate and Intermediate Compounds – Physical and Chemical delay — Significance Effect of Operating variables on Emission formation — Fumigation, Split injection, Catalytic Coating, EGR, HCCI, Particulate Traps, SCR, Fuel additives — Cetane number Effect.

UNIT IV NOISE POLLUTION FROM AUTOMOBILES

UNIT V TEST PROCEDURES AND EMISSION MEASUREMENTS
Constant Volume Sampling I and 3 (CVSI & CVS3) Systems- Sampling Procedures — Chassis dyno - Seven mode and thirteen mode cycles for Emission Sampling — Sampling problems — Emission analysers —NDIR, FID, Chemiluminescent, Smoke meters, Dilution Tunnel, SHED Test, Sound level meters.

TOTAL: 45 PERIODS

TEXTBOOKS:

REFERENCES

AM8211 AUTOMOTIVE ELECTRICAL AND ELECTRONICS LABORATORY

LIST OF EXPERIMENTS:
1. Testing of
 a. battery
 b. starting systems
 c. charging systems
 d. ignition systems
 e. body controller systems
2. Study of automotive lighting system and adjustment of head lights beam
3. Study of Logic gates, Adders, Flip flops
4. Study of SCR and IC Timers
5. Interfacing amplifier, filter, Multiplexer and De-multiplexer
6. Interfacing seven segment displays
7. Basic microprocessor and microcontroller programming like arithmetic and Logic operation, code conversion, waveform generation, look up table
8. Interfacing ADC and DAC for Data Acquisition and Control Application
9. Interfacing Sensors for Measurements of position, displacement, velocity, force, temperature, proximity/range etc
11. Study of Virtual Instrumentation
12. Study of Development of Embedded Systems
13. Mini Project

AM8301 ENGINE MANAGEMENT SYSTEMS

OBJECTIVE:
To explain the principle of engines electronic management system and different sensors used in the systems.

UNIT I FUNDAMENTALS OF AUTOMOTIVE ELECTRONICS
Components for electronic engine management system, open and closed loop control strategies, PID control, Look up tables, introduction to modern control strategies like Fuzzy logic and adaptive control. Switches, active resistors, Transistors, Current mirrors/amplifiers, Voltage and current references, Comparator, Multiplier. Amplifier, filters, A/D and D/A converters.

UNIT II SENSORS AND ACTUATORS
Inductive, Hall Effect, thermistor, piezo electric, piezoresistive, based sensors. Throttle position, mass air flow, crank shaft position, cam position, engine speed sensor, exhaust oxygen level (two step, linear lambda and wideband), knock, manifold temperature and pressure sensors. Solenoid, relay (four and five pin), stepper motor

UNIT III SI ENGINE MANAGEMENT
Layout and working of SI engine management systems. Group and sequential injection techniques. Advantages of electronic ignition systems. Types of solid state ignition systems and their principle of operation, Contactless (BREAKERLESS) electronic ignition system, Electronic spark timing control.

UNIT IV CI ENGINE MANAGEMENT

UNIT V DIGITAL ENGINE CONTROL SYSTEM
Cold start and warm up phases, idle speed control, acceleration and full load enrichment, deceleration fuel cutoff. Fuel control maps, open loop and closed loop control – Integrated engine control system, Electromagnetic compatibility – EMI Suppression techniques – Electronic dash board instruments – Onboard diagnosis system.

TOTAL: 45 PERIODS

TEXT BOOKS:
2. Automobile Electronics by Eric Chowanietz SAE

REFERENCES:
Design, model and (Structural / Thermal) analysis of the following components
1. Engine Cylinder
2. Piston Assembly.
3. Connecting rod.
4. Valves.
5. Crank shaft.
6. Cam shaft.
8. Suspension Spring.
10. Rear axle.
11. Gear box.

TOTAL: 45 PERIODS

REFERENCES:
9. ACAD, CATIA and ANSYS software guide / manual
UNIT IV FLAMES AND CHEMICAL KINETICS 9
Flames – premixed, diffusion, Laminar and turbulent – Explosion limits, Flammability limits, Ignition, Engine combustion systems. Chemical Kinetics – Reaction rates - Rate constant, Pollutants formed through chemical kinetics

UNIT V CHEMICAL EQUILIBRIUM AND DISSOCIATION 9

TOTAL: 45 PERIODS

REFERENCES:

AM8002 ALTERNATIVE FUELS AND PROPULSION SYSTEMS L T P C
3 0 0 3

OBJECTIVES
At the end of the course, the student will be able to acquire knowledge of alternate fuels and the changes in the engine design for handling them and understand various propulsion systems for use in the automobiles.

UNIT I ALCOHOLS AS FUELS 9

UNIT II VEGETABLE OILS AS FUELS 9
Vegetable oils and their important properties. Methods of using vegetable oils – Blending, preheating, Transesterification and emulsification – Performance, combustion and emission Characteristics in diesel engines. Issues & limitation in Vegetable Oils

UNIT III HYDROGEN AS ENGINE FUEL 9

UNIT IV BIOGAS, NATURAL GAS AND LPG AS FUELS 9
Biogas, Natural gas and LPG – Properties and production methods. CO₂ and H₂S scrubbing in Biogas, Modifications required for use in Engines- Performance, combustion and emission Characteristics in engines. Issues & limitation in Gaseous fuels.
UNIT V HYBRID AND ELECTRIC VEHICLES

TOTAL :45 PERIODS

REFERENCES
4. Transactions of SAE on Biofuels (Alcohols, vegetable oils, CNG, LPG, Hydrogen, Biogas etc.).

AM8003 AUTOMOTIVE AERODYNAMICS L T P C
3 0 0 3

OBJECTIVE
At the end of the course, the students will be able to apply basic principles of aerodynamics for the design of vehicle body.

UNIT I INTRODUCTION

UNIT II AERODYNAMIC DRAG OF CABS

UNIT III SHAPE OPTIMIZATION OF CABS
Front end modification – front and rear wind shield angle – Boat tailing – Hatch back, fast back and square back – Dust flow patterns at the rear – Effect of gap configuration – effect of fasteners.

UNIT IV VEHICLE HANDLING

UNIT V WIND TUNNELS FOR AUTOMOTIVE AERODYNAMICS
Principles of wind tunnel technology – Types, Stress with scale models – full scale wind tunnels – measurement techniques – Equipment and transducers – road testing methods. Introduction to CFD.

TOTAL : 45 PERIODS

TEXTBOOK:
AM8004 AUTOMOTIVE AIR CONDITIONING SYSTEM L T P C
3 0 0 3

OBJECTIVE
At the end of the course, the students will be able to understand the components of the automotive air-conditioning and their functions and the latest developments in this field.

UNIT I FUNDAMENTALS
Terminology, design factors and concepts related to air conditioning system - Construction and Working principles of Thermostatic Expansion valve and Orifice tube based system- Heating system types -detailed study of HVAC components like compressor, evaporator, condenser, TXV, orifice tube, Receiver-drier, heater core etc. Location of air conditioning components in a vehicle.

UNIT II REFRIGERANTS & AIR MANAGEMENT SYSTEMS
Refrigerants:
Temperature and pressure relation, Properties of R-12 and R134a- refrigerant oil. Simple problems - Containers - Handling refrigerants - Tapping into the refrigerant container - Ozone Layer Depletion.

Air management system:
Air routing for manual, semi and automatic system- cases and ducts- Air distribution, control head and doors- Defrost system

UNIT III AUTOMATIC CLIMATE CONTROL SYSTEM
Block diagram - types of Sensors and Actuators, - Control Logic Electrical wiring diagram of manual and automatic system - multiplexing between BCM and PCM- control of compressor clutch, blower motor etc.- diagnostics tools and features.

UNIT IV DESIGN OF AIR-CONDITIONING COMPONENTS
Modeling of Fixed and variable Displacement type compressor, evaporator modeling - heat transfer correlations for the fluids inside the evaporator, analysis of evaporator frosting- condenser modeling - improvement of refrigerant flow control method.

UNIT V AIR CONDITIONING DIAGNOSIS AND SERVICES
AC system diagnosis based on temperature and pressure measurements, sight glass, sound etc. - refrigerant leak detection- Trouble shooting and Servicing of compressor, evaporator, condenser, heater core etc. – HVAC equipment , recovery and charging. Air routing system service.

TOTAL: 45 PERIODS

TEXTBOOK:

REFERENCES
AM8005 AUTOMOTIVE SAFETY

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

OBJECTIVE:
At the end, the student will have good exposure to Automotive safety aspects including safety equipments.

UNIT I
INTRODUCTION
Automotive safety – Introduction, Types. Active safety: driving safety, conditional safety, perceptibility safety, operating safety- Passive safety: exterior safety, interior safety-Advantages

UNIT II
PASSEIVE SAFETY CONCEPTS
Design of body for safety, engine location, deceleration of vehicle, passenger compartment, deceleration on impact with stationary and movable obstacles. Deformation behavior of vehicle body. Concept of crumble zone, Safety Cage.

UNIT III
PASSEIVE SAFETY EQUIPMENTS
Regulations, Seat belt, automatic seat belt tightener system and importance , collapsible steering column, tiltable steering column with advantages , air bags, Designing ascpcets of automotive bumpers and materials for bumpers.

UNIT IV
ACTIVE SAFETY AND CONVENIENCE SYSTEM
Antiskid braking system, Secondary braking system. Stability Control. Steering and mirror adjustment, central locking system, Garage door opening system, tyre pressure control system, rain sensor system, environment information system, manual and automated wiper system, Driver alertness detection system.

UNIT V
VEHICLE INTEGRATION AND NAVIGATION SYSTEM

TOTAL: 45 PERIODS

TEXT BOOK:

REFERENCES:
3. ARAI Safety standards
OBJECTIVE:
The objective of this course is to make the students to know and understand the principle of engine combustion and to introduce the various heat transfer models and its measuring methods.

UNIT I THERMODYNAMICS OF COMBUSTION 10
Premixed and diffusion combustion process in IC engines. First and Second Law of Thermodynamics applied to combustion- combustion Stoichiometry- chemical equilibrium, spray formation and droplet combustion.

UNIT II CHEMICAL KINETICS OF COMBUSTION 10
Combustion kinetics, rate of reaction, equation of Arrhenius, activation energy. Chemical thermodynamic model for Normal Combustion.

UNIT III FLAMES 9
Laminar - premixed and diffusion flames – flame speed correlations- quenching, flammability, and ignition, flame stabilization, turbulent premixed, diffusion flames-Damkohler number.

UNIT IV HEAT TRANSFER IN IC ENGINES 8

UNIT V INSTRUMENTATION 8
Pressure sensors, crank angle encoder. Hot wire and laser Doppler anemometry and velocimetry for flow and combustion analysis in IC engines. In-cylinder pressure measurement and Rate of heat release calculation.

REFERENCES

OBJECTIVES :
- To understand the methods of representation of system and thier transfer finction models
- To provide adquate knowledge in the time response of systems and steady state error analysis
- To give basic knowledge in obtainig the open loop and closed loop frequency responses of system
- To understand the concept of stablity of control system and methos of stablity analysis
- To study the three way of designing compensators for a control system
UNIT I NEED FOR ALTERNATIVE SYSTEM

UNIT II ENERGY SOURCES : BATTERIES AND FUEL CELLS
Fuel Cell- Fuel cell characteristics- Fuel cell types-Hydrogen fuel cell- Connecting cell in series- water management in the PEM fuel cell- Thermal Management of the PEM fuel cell

UNIT III PROPULSION MOTORS AND CONTROLLERS
Characteristics of permanent magnet and separately exited DC motors. AC single phase and 3-phase motor – inverters – DC and AC motor speed controllers.

UNIT IV VEHICLE DESIGN CONSIDERATIONS FOR ELECTRIC VEHICLES
Aerodynamic-Rolling resistance- Transmission efficiency- Vehicle mass- Electric vehicle chassis and Body design considerations- Heating and cooling systems- Controllers- Power steering- Tyre choice-Wing Mirror, Aerials and Luggage racks

UNIT V HYBRID VEHICLES

TEXT BOOKS:

REFERENCES:

AM8008 FINITE ELEMENT METHODS IN AUTOMOBILE ENGINEERING

OBJECTIVE:
The objective of this course is to make the students to know and understand the principle of FEM and its application in automotive component design.

UNIT I INTRODUCTION
UNIT II 1D ELEMENTS

UNIT III 2D ELEMENTS

UNIT IV STRUCTURAL AND DYNAMIC ANALYSIS

UNIT V HEAT TRANSFER ANALYSIS AND FLOW ANALYSIS
1D & 2D problems in fluid mechanics and heat transfer by conduction and convection. Transient thermal analysis. Case Studies like Heat transfer analysis of piston, fins.

TOTAL : 45 PERIODS

TEXT BOOK:

REFERENCES

AM8009 HYDRAULIC AND PNEUMATIC SYSTEMS L T P C
3 0 0 3

OBJECTIVE:
The objective of this course is to introduce the essential principles of hydraulic and pneumatic system and related automobile applications.

UNIT I INTRODUCTION
UNIT II PNEUMATIC SYSTEMS 12

UNIT III HYDRAULIC SYSTEMS 12

UNIT IV SERVO AND PLC SYSTEMS 9
Electro pneumatics, ladder diagram. Servo and Proportional valves - types, operation, application. Hydro-Mechanical servo systems. PLC-construction, types, operation, programming.

UNIT V AUTOMOTIVE APPLICATIONS 6
Hydraulic tipping mechanism, power steering, fort lift hydraulic gear, hydro-pneumatic suspension, air brake. Maintenance and trouble shooting. Design and analysis of a hydraulic / Pneumatic system. Case Study

TEXT BOOKS:
2. Werner Deppert and Kurt Stoll, “Pneumatic Controls : An introduction to principles“, Vogel-Druck Wurzburg, Germany, 1975

REFERENCES:

AM8011 INSTRUMENTATION AND EXPERIMENTAL TECHNIQUES L T P C
3 0 0 3

OBJECTIVE:
Study of the theory, construction and operation of different measurement technology, instruments transducers and their application in automotive industry.

UNIT I MEASUREMENT SYSTEMS 8
Static and Dynamic Measurement systems-importance of measurement system – methods of measurement -applications - characteristics of measuring system-static and dynamic characteristics of measuring system – Analysis of experimental detail, Error analysis-types of errors-limiting errors
UNIT II TRANSDUCERS, MODIFIERS AND TERMINATING DEVICES
Transducers for Automotive Applications – Amplifiers-Classifications and application in automobile – filters -types – Data Acquisition system - analog and digital type DAS- Indicators, Printers and display device –Signal Analyzing with example of automobile applications.

UNIT III MECHANICAL MEASUREMENT
Instrumentation for Measuring Weight, Force, torque, pressure, power, temperature, fluid flow and special methods, vibration piezo electric effect, rotational speed. Measuring Velocity, acceleration and angular motion with respect to automobile applications.

UNIT IV ENGINE EXPERIMENTAL TECHNIQUES

UNIT V VEHICLE EXPERIMENTAL TECHNIQUES

TOTAL: 45 PERIODS

TEXTBOOK:

REFERENCES
1. A.W. Judge, ‘Engineering Precision Measurement’, Chapman and Hall Ltd, Essex Street W.C., 1951,

AM8012 NOVEL MATERIALS IN AUTOMOTIVE TECHNOLOGY

OBJECTIVE:
The objective of this course is to make the students to know and understand the development in materials and its application in automotive component design.

UNIT I INTRODUCTION
Elasticity-forms - Stress and strain relationship in engineering materials - Deformation mechanism - Strengthening material - Strain hardening, alloying, polyphase mixture, martensitic precipitation, dispersion, fibre and texture strengthening - iron carbon diagram.
UNIT II METALLIC MATERIALS 9
Cast irons - types, properties, structures, compositions and applications, plain carbon steels, low alloy steels and effects of alloying elements, high alloy steels, stainless steel types, castability, formability, machinability, hardenability and weldability of the material, high temperature steels and super alloys. Applications in Automobiles

UNIT III COMPOSITES 9
Mechanics, Manufacturing and Design. Types of composites. Fiber reinforced plastics (FRP), engineering ceramics, metal matrix composites, silicon carbide, graphite, fibres of zirconia, alumina and boron nitride - metal filaments - boron filaments - glass fibres applications, nano-composites. Piezoelectric composites. Applications in Automobiles

UNIT IV ELECTRICAL AND MAGNETIC MATERIALS 9

UNIT V RUBBER AND PLASTICS MATERIALS 9

TOTAL : 45 PERIODS

TEXT BOOK:

REFERENCES

AM8013 PRODUCTION OF AUTOMOTIVE COMPONENTS L T P C
3 0 0 3

OBJECTIVE:
The objective of this course is to make the students to know and understand the production methods of various engine components like piston, connecting rod, crankshaft etc and various chassis components like friction lining materials, propeller shaft, steering column, gears etc.

UNIT I CASTING 9
Sand casting of cylinder block and liners - Centrifugal casting of flywheel, piston rings, bearing bushes, and liners, permanent mould casting of piston, pressure die casting of carburetor and other small auto parts. Melting practice of alloys
UNIT II MACHINING
Special consideration of machining of various components such as flywheel, piston rings, bearing bushes, and liners. Machining of connecting rods - crank shaft - cam shaft - piston - piston pin - valve - front and rear axle housing - fly wheel - Honing of cylinder bores - Copy turning and profile grinding machines.

UNIT III FORMING PROCESS

UNIT IV POWDER METALLURGY AND PROCESSING OF PLASTICS

UNIT V RECENT TRENDS IN MANUFACTURING OF AUTO COMPONENTS

TOTAL : 45 PERIODS

TEXT BOOK

REFERENCES
5. High Velocity "Forming of Metals ", ASTME, prentice Hall of India (P) Ltd., New Delhi, 1990
6. HMT handbook

AM8010 IC ENGINE PROCESS MODELING
OBJECTIVE:
The main objective of this course is to impart knowledge in computer simulation of IC engine process. The detailed concept of air standard, fuel air cycle, progressive and actual cycle simulation of SI engine will be taught to the students. The simulation of two stroke SI engine will also be introduced to the students. At the end of the course the students will have command over simulation of IC engine process.

UNIT I INTRODUCTION
UNIT II COMBUSTION AND STOICHIOMETRY 9
Reactive processes, Heat of reaction, measurement of URP, measurement of HRP. Introduction -
combustion equation for hydrocarbon fuels. Calculation of minimum air, excess air and stoichiometric
air required for combustion. Conversion of volumetric analysis to mass analysis. Introduction,
complete combustion in C-H-N-O systems, constant volume adiabatic combustion, constant pressure
adiabatic combustion, calculation of adiabatic flame temperature, isentropic changes of state.

UNIT III COMPUTER SIMULATION OF SI ENGINE WITH FUEL AIR CYCLE 9
SI Engine simulation with air as working medium, deviation between actual and ideal cycle. Fuel air
cycle analysis - Temperature drop due to fuel vaporization, full throttle operation, work output and
efficiency calculation, part-throttle operation, engine performance at part throttle, super charged
operation. SI Engines simulation with progressive combustion. Wiebe’s law combustion analysis.

UNIT IV COMPUTER SIMULATION OF SI ENGINE WITH GAS EXCHANGE PROCESS 9
Introduction, gas exchange process, Heat transfer process, friction calculations, compression of
simulated values, validation of the computer code, engine performance simulation, pressure crank
angle diagram, brake power, brake thermal efficiency, effect of speed on performance.

UNIT V COMPUTER SIMULATION OF CI ENGINE 9
Zero, one and multizone models for diesel engine combustion. Double Wiebe’s Law analysis for
Parametric studies on simulated engine performance.

TOTAL: 45 PERIODS

TEXTBOOK:
1. Ganesan.V. "Computer Simulation of spark ignition engine process", Universities Press (I) Ltd,
Hyderabad, 1996.

REFERENCES
1992.P
York, 1986.

AM8014 SIMULATION OF VEHICLE SYSTEMS L T P C
 3 0 0 3

OBJECTIVE:
The objective of this course is to introduce the essential principles of simulation of various vehicle
systems like longitudinal, lateral dynamics, modeling of suspension and tyre system etc.

UNIT I LONGITUDINAL DYNAMICS AND CONTROL 9
Aerodynamic drag force - Longitudinal tyre force - Rolling resistance - Calculation of normal tyre
forces - Calculation of effective tyre radius - Driveline Dynamics - Torque converter - Transmission
dynamics - Engine dynamics - Wheel dynamics - Cruise Control - Anti-Lock Brake Systems -
Automated Highway Systems - Longitudinal Control Architecture.

UNIT II LATERAL DYNAMICS AND ELECTRONIC STABILITY CONTROL 9
Lateral Systems - Kinematic Model - Bicycle Model. Motion of Particle Relative to a rotating Frame.
Dynamic Model in Terms of Error with Respect to Road, Yaw Rate and Slip Angle. Road Model.
Differential Braking Systems - Steer-By-Wire Systems - Independent All Wheel Drive Torque Distribution

UNIT III MODELING OF PASSIVE AUTOMOTIVE SUSPENSIONS 9

UNIT IV MODELING OF SEMIACTIVE AND ACTIVE AUTOMOTIVE SUSPENSIONS 9
Semi-Active Suspension Model - Optimal Semi-Active Control Law - Calculation of Transfer Function Plots - Performance of Semi-Active Suspension Systems. Active Automotive Suspensions - Trade-offs and Limitations - Invariant Points and Their Influence - Hydraulic Actuators for Active Suspensions

UNIT V LATERAL AND LONGITUDINAL TYRE FORCES 9

TOTAL : 45 PERIODS

TEXT BOOK

AM8015 SPECIAL TYPE OF VEHICLES L T P C
3 0 0 3

OBJECTIVE:
The main objective of this course is to introduce the concept and principle of operation of special vehicles such as Bulldozers, Ditchers, Bucket excavators, farm equipments, military vehicles etc. At the end of the course, the students can have a better understanding of the application of the special types of vehicles in the excavation of earth.

UNIT I EARTH MOVING AND CONSTRUCTIONAL EQUIPMENTS 10
Construction details, capacity and applications of earthmovers for dumpers, front-end loaders, bulldozers, excavators, backhoe loaders, scrappers, motor graders etc. criteria for selection of prime mover for dumpers and front end loaders based on vehicle performance characteristics.

UNIT II POWER TRAIN CONCEPTS 7

UNIT III VEHICLE SYSTEMS AND FEATURES 14
UNIT IV Special Purpose Vehicles for Industrial Applications 5

UNIT V Farm Equipments, Military and Combat Vehicles 9
Ride and stability characteristics, power take off, special implementations. Special features and constructional details of tankers, gun carriers and transport vehicles. Harvesting vehicles.

REFERENCES

AM8016 Theory of Fuels and Lubricants L T P C 3 0 0 3

OBJECTIVES
To understand the properties of fuels and lubricants for the design and operation of the I.C engines.

UNIT I Manufacture of Fuels and Lubricants 9
Structure of petroleum, refining process, fuels, thermal cracking, catalytic cracking, polymerization, alkylation, isomerisation, blending, products of refining process. Manufacture of lubricating oil base stocks, manufacture of finished automotive lubricants.

UNIT II Theory of Lubrication 9
Engine friction: introduction, total engine friction, effect of engine variables on friction, hydrodynamic lubrication, elasto hydrodynamic lubrication, boundary lubrication, bearing lubrication, functions of the lubrication system, introduction to design of a lubricating system.

UNIT III Properties and Testing of Lubricants 9
Specific requirements for automotive lubricants, oxidation deterioration and degradation of lubricants, synthetic lubricants, classification of lubricating oils, properties of lubricating oils, tests on lubricants. Grease, classification, properties, test used in grease.

UNIT IV Properties and Testing of Fuels 9
Thermo-chemistry of fuels, properties and testing of fuels, relative density, calorific value, flash point, fire point, distillation, vapour pressure, spontaneous ignition temperature, viscosity, pour point, flammability, ignitability, diesel index, API gravity, aniline point, carbon residue, copper strip corrosion etc.

UNIT V Additives for Lubricants and Fuels 9
Additive - mechanism, requirements of additive, petrol fuel additives, diesel fuel additives – Additives and additive mechanism, for lubricants. Introduction to Nano fluids

TOTAL : 45 PERIODS

TEXT BOOKS:
REFERENCES

AM8017 TWO AND THREE WHEELERS

OBJECTIVE:
The objective of this course is to make the students to know and understand the constructional details, operating characteristics and design aspects of Two and Three wheelers.

UNIT I INTRODUCTION
Classifications- design considerations –weight and dimension limitations –requirements, stability problems, gyroscopic effect- pendulum effect of two and three wheelers.

UNIT II POWER UNITS, IGNITION SYSTEMS AND OTHER ELECTRICAL SYSTEMS
2 stoke and 4 stoke engines. Design criteria for engines – design of cylinders, cylinder head, cooling fins, crank case, connecting rod and crank shaft. Carburettor types and design. Battery coil ignition, magneto ignition and electronic ignition. Lighting and other electrical systems.

UNIT III CLUTCHES AND TRANSMISSION

UNIT IV FRAMES, SUSPENSION, WHEELS AND TYRES
Types of frames. Wheel frames- construction design of frames for fatigue strength, torsional stiffness and lateral stability. Front and rear forks. Springs for suspension, Dampers, constructional details of wheel and tyres.

UNIT V THREE WHEELERS
Auto rickshaws, different types, Pick-Ups and delivery type vehicle, frames and transmission, wheel types, wheel mountings attachment, tyre types. Brake systems.

TOTAL: 45 PERIODS

TEXTBOOK:

REFERENCES:
4. Servicing Manuals- various motor cycles, Scooters, Mopeds and three wheelers.
AM8018 VEHICLE CONTROL SYSTEMS L T P C
3 0 0 3

OBJECTIVE:
To explain the principle of chassis management system and different sensors used in the systems.

UNIT I INTRODUCTION
Components of chassis management system – role of various sensors and actuators pertaining to chassis system – construction – working principle of wheel speed sensor, steering position, tyre pressure, brake pressure, steering torque, fuel level, Engine and vehicle design data.

UNIT II DRIVELINE CONTROL SYSTEM
Speed control – cylinder cut-off technology, Gear shifting control – Traction / braking control, brake by wire – Adaptive cruise control, throttle by wire. Steering - power steering, collapsible and tiltable steering column – steer by wire.

UNIT III SAFETY AND SECURITY SYSTEM
Airbags, seat belt tightening system, collision warning systems, child Lock, anti lock braking systems, Vision enhancement, road recognition system, Anti theft technologies, smart card system, number plate coding, central locking system.

UNIT IV COMFORT SYSTEM
Active suspension systems, requirement and characteristics, different types, Vehicle Handling and Ride characteristics of road vehicle, pitch, yaw, bounce control, power windows, thermal management system, adaptive noise control.

UNIT V INTELLIGENT TRANSPORTATION SYSTEM

TOTAL: 45 PERIODS

TEXT BOOKS:

REFERENCES:
4. Internet References

AM8019 VEHICLE MAINTENANCE L T P C
3 0 0 3

OBJECTIVE
At the end of the course, the students will be able to have a complete knowledge of the vehicle maintenance procedures and acquire skills in handling situations where the vehicle is likely to fail.
UNIT I MAINTENANCE TOOL, SHOP, SCHEDULE, RECORDS 8

UNIT II POWER PLANT REPAIR AND OVERHAULING 12

UNIT III MAINTENANCE, REPAIR AND OVERHAULING OF THE CHASSIS 10
Maintenance, servicing and repair of clutch, fluid coupling, gearbox, torque converter, propeller shaft. Maintenance of front axle, rear axle, brakes, steering systems.

UNIT IV MAINTENANCE AND REPAIR OF VEHICLE BODY 8
Body panel tools for repairing. Tinkering and painting. Use of soldering, metalloid paste. Tyre maintenance, metallic, plastics.

UNIT V MAINTENANCE AND REPAIR OF ELECTRICAL SYSTEMS 7
Care, maintenance, testing and trouble shooting of battery, starter motor, dynamo, alternator and regulator. Transistorized regulator problems.

TOTAL : 45 PERIODS

TEXTBOOK:

REFERENCES:
2. Frazee, fledell, Spicer,-Automobile collision Work, American technical publications, Chicago, 1953.
3. John Dolce, Fleet maintenance, Mcgraw Hill, Newyork, 1984