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• In developing the response side of the aircraft force equations, 
several additional assumptions will be made.

• First an aircraft is assumed to be a rigid body
– This assumes that the different parts of the aircraft are not moving with 

respect to each other

• The mass of the aircraft is also assumed to be constant, which 
is reasonable over a relatively short duration of time.

Kaviyarasu A, MIT Chennai



• This assumption allows Newton’s 2nd law to be rewritten as

• Newton’s 2nd law is only valid with respect to an inertial
reference frame, the equations can be expressed in the vehicle
body axis system.

• If the equations are expressed in the body axis system, the fact
that the system is rotating with respect to an inertial reference
frame.

 
inertial

inertial

d V
m ma F

dt

 
  

  
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• Expressing  the body measurement in the inertial reference frame

 Inertial body body bodybody
a V V  

ˆˆ ˆ
bodyV Ui Vj Wk  

       , ,    bodyThe velocity vector in the body axis system is definedV as

,  ,         ,  ,     ,

 

whereU V and W are the velocities in the x y and z body axes

respectively
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• The aircraft angular rate in the body axis system, Body, is
defined as

ˆˆ ˆ
body Pi Qj Rk   

 

ˆˆ ˆ

Inertial body

body body

U i j k

a V P Q R

W U V W

  
  

    
  

   

,  ,      ,  ,    ,  

     .

P Q and R are the roll pitch and yaw rates respectively

expressed in the body axis

body
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• Multiplying the inertial acceleration in the body axis system by the 
mass m of the aircraft yields the three force equations

 Inertial body

body

U QW RV

a V RU PW

W PV QU

  
 

   
   

x

y body

z
bodybody

U QW RV F

m V RU PW F F

W PV QU F

    
   

      
       
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 

 

 
     response side of the force equa

x

y

z

tion

m U QW RV F

m V RU PW F

m W PV QU F

  

  

  
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Applied forces
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• The previous section developed the left-hand side, or response side, of 
the force equations. The right-hand side of each equation consists of 
the applied forces that act on the aircraft. They consist of the gravity 
forces, the aerodynamic forces, and the thrust forces.

 

 

 

x x x

y y y

z z z

G A T

G A T

G A T

m U QW RV F F F

m V RU PW F F F

m W PV QU F F F

    

    

    
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• The left-hand sides of the equations (response equation) were
developed in the body axis system, the right-hand side ( the above
equation) must also be in the body axis system.

• Therefore, each of the forces must be represented in the body axis
system for the previous equations to be valid.
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• The gravity forces, aerodynamic forces, and thrust forces were
previously determined in the body axis system. Therefore, the three
force equations in the body axis system are

   

 

   

sin cos sin cos

sin cos

cos cos sin cos sin

y y

T

A T

T

Three force equation

m U QW RV mg D A L A T

m V RU PW mg F F

m W PV QU mg D A L A T





 

       

    

      
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Moment Equation
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• The three moment equations are determined by applying Newton’s 2nd
law in a manner similar to the three force equations. Newton’s 2nd law
states that the time rate of change in the angular momentum of the
aircraft is equal to the applied moments acting on the aircraft, namely,

• H is the angular momentum of the aircraft and is defined as

Inertial

dH
M

dt

 
 

 

 H r mV 
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Response Side of Moment 
Equations

• A six-step procedure will be used to methodically build up the
response side of the three moment equations. This provides both a
mathematical and physical insight into the equations.
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• Step 1. The first step is to examine a small elemental mass, dm, of the
aircraft that is located at some distance from the aircraft’s center of gravity.
It will be assumed that the elemental mass is rotating about the aircraft
center of gravity with a positive roll rate, pitch rate, and yaw rate (P, Q, and
R, respectively). The distance from the center of gravity to the small mass is
defined as

where x, y, and z are the distances in the x, y, and z axes of the body axis 
system

ˆˆ ˆdmr xi yj zk  
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• Step 2. Next an expression is developed for the velocity of the small mass,
dm, solely because of its rotation about the center of gravity. The velocity
for the movement of the center of gravity of the aircraft was taken into
account in the development of the three force equations.
The velocity of the mass relative to the center of gravity is determined
using the expression

• Because the aircraft was previously assumed to be a rigid body, is
constant

dm
dm dmbody

body

dr
V r

dt


 
   
 

0
dm

body

dr

dt

 
 

 

dmV

dmr
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dm dmbodyV r 

ˆˆ ˆ

dm

i j k

V P Q R

x y z

 
 

  
 
 

      ˆˆ ˆdmV Qz Ry i Rx Pz j Py Qx k     
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• Step 3. Next an expression is developed for the linear momentum of
solely because of its rotation about the center of gravity. The linear
momentum is found simply by multiplying the mass times the velocity,
namely,

      ˆˆ ˆdm Qz Ry i Rx Pz j Py Qx k      
 

 Linear Momentum dmV

dm
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• Step 4. An expression for the angular momentum of the differential mass, 
dm, is developed using

• After carrying out the cross product and regrouping the terms, the three 
components of the angular momentum are

 dmdm dmdH r dmV 

     

ˆˆ ˆ

dm

i j k

dH x y z

dm Qz Ry dm Rx Pz dm Py Qx

 
 

  
   
 

 

 

 

2 2

2 2

2 2

x

y

z

dH P y z dm Qxy dm Rxz dm

dH Q x z dm Ryz dm Pxy dm

dH R x y dm Pxz dm Qyz dm

   

   

   
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• Step 5. The next step is to integrate the expressions for the angular
momentum of dm over the entire aircraft. Because P, Q, and R are not
functions of the mass, they can be taken outside of the integration.
Therefore, the three components for the angular momentum of the entire
aircraft are

 

 

 

2 2

2 2

2 2

 

 

 

x x

y y

z z

H dH P y z dm Q xy dm R xz dm

H dH Q x z dm R yz dm P xy dm

H dH R x y dm P xz dm Q yz dm

    

    

    

   

   

   
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• The moments of inertia are indications of the resistance to rotation about
that axis (i.e, Ixx indicates the resistance to rotation about the x axis of the
aircraft).

 

 

 

2 2

2 2

2 2

xx

yy

zz

I y z dm

I x z dm

I x y dm

 

 

 







The moment of inertia are defined as
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• The products of inertia are an indication of the symmetry of the aircraft.
Substituting the moments and products of inertia

xy

xz

yz

I xy dm

I xz dm

I yz dm













x xx xy xz

y yy yz xy

z zz xz yz

H PI QI RI

H QI RI PI

H RI PI QI

  

  

  

The product of inertia are

Kaviyarasu A, MIT Chennai



• This can also be easily found by applying an expression for angular
momentum usually developed in basic physics courses, which is

• Where     is the aircraft’s inertia tensor and omega is the aircraft’s angular 
rate. The inertia tensor for an aircraft is

ˆˆ ˆx y zH H i H j H k  

H I

xx xy xz

xy yy yz

xz yz zz
Body

I I I

I I I I

I I I

  
 

  
 
   

I
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xx xy xz

B xy yy yz

xz yz zz
Body

I I I P

H I I I Q

I I I R

    
   

  
   
       

x xx xy xz

y yy yz xy

z zz xz yz

H PI QI RI

H QI RI PI

H RI PI QI

  

  

  
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       .xy yz

If the aircraft is assumed to have an xz plane of symmetry

the I and I products of inertia are zero

           

           .

An aircraft has an xz plane of symmetry when the left side of the

aircraft is a mirror image of the right side about the xz plane

Kaviyarasu A, MIT Chennai



0xzI xz dm  0xyI xy dm  0yzI yz dm 

  Aircraft product of inertia

            

     .

         

xz

xy yz

The I in the first figure not necessarily zero because the aircraft is not symmetrical

from top to bottom about the xz plane

Notice for I and I the reflection plane symmetry between quadrants I and IVand

   .

          .       

       ,      .xz

II and III

This leads to a zero value for both products of inertia Also notice that we do not

have reflection plane symmetry for the case of I therefore it has a nonzero value
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The angular momentum components for the aircraft become

x xx xz

y yy

z zz xz

H PI RI

H QI

H RI PI

 



 

      ˆˆ ˆxx xz yy zz xzH PI RI i QI j RI PI k    
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• Step 6. After the angular momentum vector of the aircraft has been
determined, the final step is to take the time rate of change of the angular
momentum vector with respect to inertial space but represented in the
aircraft body axis system. The same relationship used in developing the
acceleration with respect to an inertial reference frame from the force
equations can be used, namely

body body

Inertial body

dH dH
H

dt dt


   
     

   

xx xz xx xz

yy yy

body
zz xz zz xz

body

PI RI PI RI
dH

QI QI
dt

RI PI RI PI

   
   

    
      
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• Assuming that the mass distribution of the aircraft is constant, such as
neglecting fuel slosh, the moments and products of inertia do not change
with time

xx xz

yy

body
zz xz

body

PI RI
dH

QI
dt

RI PI

 
   

   
    

body

xx xz yy zz xz
body

i j k

H P Q R

PI RI QI RI PI



 
 

 
 
   

,. xx yy zzi e I I and I are all zero
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• Grouping terms yields

 

   

 

zz xz yy

xx xz zz xzbody

yy xx xz
body

Q RI PI RQI

H R PI RI P RI PI

PQI Q PI RI



  
 

     
   

   

   

   

2 2

xx zz yy xz

yy zz xx xz

Inertialbody

zz yy xx xz
body

PI QR I I R PQ I

dH
QI PR I I P R I

dt

RI PQ I I QP P I

    
 

 
      
  
    
 
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• The above equation yields the three moment equations of motion in the body axis
system, where the left-hand side represents the response of the aircraft and the
right-hand side consists of the applied moments.

• L, M, and N are the rolling moment, pitching moment, and yawing moment,
respectively. Unfortunately, the letter L is used to also represent lift.

   

   

   

    

2 2
       

   A
     Gyro    Coupling

          
     

    

   

 

xx zz yy xz

yy zz xx xz

yy xx xz

ngular
acceleration

precession termsterms
terms

PI QR I I R PQ I L

QI PR I I P R I M

RIzz PQ I I QP P I N

    

    

    
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Thank you
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