FRANE CONVERSION INERTIAL TO BODY FRNME
 Prepared by

A.Kaviyarasu
Teaching Fellow
Department of Aerospace Engineering Madras Institute Of Technology
Chromepet, Chennai

INERTIAL FRAME

- A frame in which all Newton Law's obeys.
- Inertial Frame is also called non accelerating frame.
- X-axis points north.
- Y-axis points east.
- Z-axis points towards down.
- Inertial frame is also consider as NED Frame.
- Note: Because the z-axis points
 down the altitude above the ground is negative.

BODY FRAME

- Body frame is the coordinate system in which the frame is aligned with body of the sensor.
- X-axis point out of the nose
- Y-axis points out right side of the Fuselage
- Z-axis points out the bottom of the Fuselage

CONVERSION FROM inertial frame TO BODY FRAME

INERTIAL FRAME TO VEHICLE 1 FRAME BY AN ANGLE

$$
R_{I}^{v 1}(\psi)=\left(\begin{array}{ccc}
\cos (\psi) & \sin (\psi) & 0 \\
-\sin (\psi) & \cos (\psi) & 0 \\
0 & 0 & 1
\end{array}\right)
$$

VEHICLE FRAME 1 TO VEHICLE FRAME 2 BY AN ANGLE (θ)

VEHICLE FRAME 2 TO BODY FRNME BY AN ANGLE

$$
R_{v 2}^{B}(\phi)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\phi) & \sin (\phi) \\
0 & -\sin (\phi) & \cos (\phi)
\end{array}\right)
$$

CONVERSION FROM INERTIAL FRAME TO BODY FRAME

$$
\begin{gathered}
R_{I}^{B}(\phi, \theta, \psi)=R_{v 2}^{B}(\phi) R_{v 1}^{\nu 2}(\theta) R_{I}^{\nu 1}(\psi) \\
R_{I}^{B}(\phi, \theta, \psi)=\left(\begin{array}{ccc}
C_{\psi} C_{\theta} & C_{\theta} S_{\psi} & -S_{\theta} \\
C_{\psi} S_{\phi} S_{\theta}-C_{\phi} S_{\psi} & C_{\phi} C_{\psi}+S_{\phi} S_{\psi} S_{\theta} & C_{\theta} S_{\phi} \\
S_{\phi} S_{\psi+} C_{\phi} C_{\psi} S_{\theta} & C_{\phi} S_{\psi} S_{\theta-} C_{\psi} S_{\phi} & C_{\phi} C_{\theta}
\end{array}\right)
\end{gathered}
$$

- The rotation matrix for moving opposite direction from body frame to the inertial frame.

$$
R_{B}^{I}(\phi, \theta, \psi)=R_{I}^{\nu 1}(-\psi) R_{v 1}^{\nu 2}(-\theta) R_{\nu 2}^{B}(-\phi)
$$

$$
R_{B}^{I}(\phi, \theta, \psi)=\left(\begin{array}{ccc}
C_{\psi} C_{\theta} & C_{\psi} S_{\phi} S_{\theta-} C_{\phi} S_{\psi} & S_{\phi} S_{\psi+} C_{\phi} C_{\psi} S_{\theta} \\
C_{\theta} S_{\psi} & C_{\phi} C_{\psi}+S_{\phi} S_{\psi} S_{\theta} & C_{\phi} S_{\psi} S_{\theta-} C_{\psi} S_{\phi} \\
-S_{\theta} & C_{\theta} S_{\phi} & C_{\phi} C_{\theta}
\end{array}\right)
$$

- The rategyro,accelerometer and magnetometer are aligned with the body frame of vehicle.
- In order to get inertial frame data ,the sensor outputs are converted from the body frame to the inertial frame.
- This can be accomplished by performing the matrix multiplication $R_{B}^{I}(\phi, \theta, \psi)$.
- The resultant matrix for converting Body frame angular rates (p,q,r) into Euler angular rate (ϕ, θ, ψ) is

$$
\begin{gathered}
{\left[\begin{array}{c}
p \\
q \\
r
\end{array}\right]=R_{\phi}^{B}(\phi)\left[\begin{array}{l}
\dot{\phi} \\
0 \\
0
\end{array}\right]+R_{\phi}^{B}(\phi) R_{\theta}^{\phi}(\theta)\left[\begin{array}{c}
0 \\
\dot{\theta} \\
0
\end{array}\right]+R_{\phi}^{B}(\phi) R_{\theta}^{\phi}(\theta) R_{\mathrm{I}}^{\theta}(\psi)\left[\begin{array}{c}
0 \\
0 \\
\dot{\psi}
\end{array}\right]} \\
R_{\theta}^{\phi}(\theta)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\phi) & \sin (\phi) \\
0 & -\sin (\phi) & \cos (\phi)
\end{array}\right) \quad R_{\mathrm{I}}^{\theta}(\psi)=\left(\begin{array}{ccc}
\cos (\theta) & 0 & -\sin (\theta) \\
0 & 1 & 0 \\
\sin (\theta) & 0 & \cos (\theta)
\end{array}\right) \\
R_{\phi}^{B}(\phi)=\text { Identity Matrix }
\end{gathered}
$$

$$
\left[\begin{array}{c}
p \\
q \\
r
\end{array}\right]=\left(\begin{array}{ccc}
1 & 0 & -\sin (\theta) \\
0 & \cos (\phi) & \sin (\phi) \cos (\theta) \\
0 & -\sin (\phi) & \cos (\phi) \cos (\theta)
\end{array}\right)\left[\begin{array}{l}
\dot{\phi} \\
\dot{\theta} \\
\dot{\psi}
\end{array}\right]
$$

Inverting the relation gives relationship between body rate and Euler rate.

$$
\left[\begin{array}{l}
\dot{\phi} \\
\dot{\theta} \\
\dot{\psi}
\end{array}\right]=J\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]=\left(\begin{array}{ccc}
1 & \sin (\phi) \tan (\theta) & \cos (\phi) \tan (\theta) \\
0 & \cos (\phi) & -\sin (\phi) \\
0 & \frac{\sin (\phi)}{\cos (\theta)} & \frac{\cos (\phi)}{\cos (\theta)}
\end{array}\right)\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]
$$

J is the rotational matrix

$$
\left[\begin{array}{c}
\dot{\phi} \\
\dot{\theta} \\
\dot{\psi}
\end{array}\right]=\left(\begin{array}{c}
p+\mathrm{q} \sin (\phi) \tan (\theta)+r \cos (\phi) \tan (\theta) \\
q \cos (\phi)-r \sin (\phi) \\
q \frac{\sin (\phi)}{\cos (\theta)}+r \frac{\cos (\phi)}{\cos (\theta)}
\end{array}\right)
$$

- This operation explains mathematically why gimbal lock becomes a problem when using Euler Angles. To estimate yaw, pitch, and roll rates, gyro data must be converted to their proper coordinate frames using the matrix J. But notice that there is a division by in two places on the last row of the matrix.
- When the pitch angle approaches +/- 90 degrees, the denominator goes to zero and the matrix elements diverge to infinity, causing the filter to fail.

Thank you

